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Topic Outline

What is this topic about?
To keep it as simple as possible, (K.I.S.S. Principle) this topic covers:

1. Projectile Motion
Characteristics of projectile motion. Analysis of projectile motion.

How to calculate max.height, time of flight, range, position or velocity at any instant.
Projectiles launched horizontally. Prac.work.

2. Circular Motion
Characteristics of uniform circular motion. Orbital speed and tangential velocity. 

Centripital acceleration and force. Where centripital force comes from in different cases.
“Centrifugal” pseudo-force. Tangential inertia and banked curves.

Angular velocity. Work & energy in circular motion. The concept of “torque”.

3. Motion in Gravitational Fields
Newton’s Law of Universal Gravitation. Gravitational field strength measured by “g”. 

Gravity& weight on other planets. Concept of an orbit and escape velocity. Launching spacecraft.
Why rockets? Different orbit types & uses. Orbital velocity & radius.

Brief history of Astronomy. Kepler’s Laws & Newton’s proof. 
Re-entry of spacecraft... shedding energy. Energy of satellites.

1. Projectiles
Features of projectile motion

Analysing projectile motion
Max.height, time of flight, range, etc.

Projectiles launched horizontally

2. Circular Motion
Features of circular motion Orbital speed & velocity

Centripital acceleration & force Causes of centripital force
“Centrifugal” force, inertia & banked curves

Work & energy in circular motion

3. Motion in
Gravitational

Fields
Newton’s Universal Gravitation

Grav. field strength, “g”
Gravity & weight on other planets

Concept of an orbit & escape velocity
Launching a spacecraft
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Angular velocity
The concept of torque

Types of orbits & their uses
Orbital speed & radius of satellites

Brief history of Astronomy
Kepler’s Laws & Newton’s proof

Re-entry of spacecraft
Energy of a satellite

Attention Teachers & Students
This module might NOT cover all the syllabus content as fully as KISS Resources usually do.

This is due to time constraints, as explained by a notice at our website.
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What is a Projectile?
A projectile is any object that is launched, and then
moves only under the influence of gravity.

Examples:

Once struck, kicked or
thrown, a ball in any sport
becomes a projectile.

Any bullet, shell or
bomb is a projectile

once it is fired,
launched or

dropped.

An example which is 
NOT a Projectile:

A rocket or guided missile,
while still under power, is
NOT a projectile.

Once the engine stops
firing it becomes a
projectile.

Projectiles are subject to
only one force...
Gravity!

When a projectile is travelling through air, there is,
of course, an air-resistance force acting as well. 

For simplicity, (K.I.S.S. Principle) air-resistance is
assumed to be negligible throughout this topic.

In reality, a projectile in air, does not
behave the way described here because of

the effects of air-resistance.

The exact motion depends on many
factors and the Physics becomes very

complex, and beyond the scope 
of this course. 

Projectile Motion
By simple observation of a golf ball trajectory, or a
thrown cricket ball, the motion of any projectile can
be seen to follow a curve. It is in fact a parabola,
and you might think the Physics of this is going to
be difficult.  NOT SO... it is really very simple. 

Just remember the following:
You must analyse projectile motion as 2 separate
motions; horizontal (x-axis) and vertical (y-axis)
must be dealt with separately, and combined as
vectors if necessary.

The Trajectory (Path) 
of a Projectile

Equations for Projectile Motion

Horizontal Motion is CONSTANT VELOCITY

Vertical Motion is CONSTANT ACCELERATION 
at “g”, DOWNWARDS

θθ angle of launch

The Intitial Launch
Velocity (u) has

horizontal & vertical
components

M
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“Range” = Total Horizontal Displacement

Horizontal
Velocity

vx

Vertical
Velocity

vy

At any instant, the projectile’s position
or velocity is the vector sum of

horizontal + vertical components

u
uy

ux

1. Resolve the Initial Launch Velocity into
Vertical & Horizontal Components

Sin θθ =  uy   & Cos θθ  =  uxu                         u

∴∴ uy = u.Sinθθ,, ux = u.Cosθθ

2. Horizontal Motion is constant velocity, so

vx =  Sx is all you need
t

3. Vertical Motion is constant acceleration at “g”

To find vertical velocity:
vy = uy + g.t     (from  v = u+at)

To find vertical displacement:
Sy = uy.t + 1.g.t2 (from  S = ut + 1at2)

2                                 2

θθ

u uy

ux

Projectiles

Not a
Projectile

1. Projectile Motion

To enable analysis, all you need is the initial
“launch velocity” (U) & angle of launch (θθ)

It is wise to always consider “up” as positive,
“down” as negative vector directions.
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Example 1
The cannon shown fires a shell at an initial velocity of 400ms-1. 
If it fires at an angle of 20o, calculate:

a) the vertical and horizontal components of the initial velocity.

b) the time of flight. (assuming the shell lands at the
same horizontal level)

c) the range. (same assumption)

d) the maximum height it reaches.

a) 
uy = u.Sinθθ ux = u.Cosθθ

= 400..Sin20         = 400.Cos20
= 136.8ms-1 = 375.9ms-1

((upwards)         (horizontal)

b) The shell is fired upwards, but acceleration
due to gravity is downwards. 
You must assign up = (+ve), down = ( -ve).

Key Point of analysis:
At the top of its arc, the shell will have an
instantaneous vertical velocity = zero.

vy = uy + g.t 
0 = 136.8 + (-9.81)xt   (at the highest point)

∴∴ t = -136.8/-9.81
= 13.95 s        

This means it takes 13.95s to reach the top of its
arc. Since the motion is symmetrical, it must take
twice as long for the total flight.                
∴∴  time of flight = 27.9s 

c) Range is horizontal displacement

Remember    
vx= ux= constant velocity

vx =  Sx       
t

∴∴  Sx = vx.t    (use time of flight)

= 375.9 x 27.9
= 10,488m

Range = 1.05x104m        (i.e. 10.5 km)  

d) Vertical Height (up = (+ve), down = ( -ve))
Sy = vy.t + 1.g.t2

2       
= 136.8x13.95 + 0.5x(-9.81)x(13.95)2

= 1901.5 + (-947.7)
= 953.8m = 9.54x102m.    (almost 1 km high)

Note: the time used is the time to reach the top of the arc...
the time at the highest point, NOT total time of flight.

Point to Note:
The mass of the projectile does NOT enter

into any calculation. The trajectory is
determined by launch velocity & angle, plus

gravity. Mass is irrelevant!
(Remember that all masses accelerate the same, at “g”)

u = 400ms-1

θθ = 20o

Analysing Projectile Motion
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d) Velocity at t = 3.50s ?
Vertical Horizontal

vy = uy + g.t vx= ux= constant

= 22.9+(-9.81)x3.50         = 16.1ms-1

= -11.4ms-1

(this means it is downwards)

Tan θθ = 11.4/16.1
∴∴  θθ  ≅≅ 35o

at an angle 35o below horizontal

By Pythagorus,   
v2 = vy

2 + vx
2

= (-11.4)2 + 16.12

∴∴ v =    389.17 = 19.7ms-1

16.1

Resultant Velocity

11
.4

θ

b) Maximum Height
is achieved at t = 2.33s, so

Sy = uy.t + 1.g.t2

2     
= 22.9x2.33 + 0.5x(-9.81)x(2.33)2

= 53.5 + (-26.6)
= 26.9m

Analysing Projectile Motion cont.
Example 2

The batsman has just hit the ball upwards at an angle of 55o, with an
intial velocity of 28.0ms-1.  The boundary of the field is 62.0m away from
the batsman.

Resolve the velocity into vertical and horizontal components, then use
these to find:

a) the time of flight of the ball.

b) the maximum height reached.

c) whether or not he has “hit a 6” by clearing the boundary.

d) the velocity of the ball (including direction) at the instant t = 3.50s.

Remember to let UP = (+ve)
DOWN = ( -ve)

acceleration = “g” = -9.81ms-2

Vertical & Horizontal
Components of Velocity

uy = u.Sinθθ,, ux = u.Cosθθ
= 28Sin55       = 28Cos55
= 22.9ms-1 = 16.1ms-1

a) Time of Flight

At highest point vy= 0, so

vy = uy + g.t 
0 = 22.9 + (-9.81)xt

∴∴ t = -22.9/-9.81
= 2.33s

This is the mid-point of the
arc, so time of flight = 4.66s

c) Range will determine if he’s “hit a 6”.

vx= ux= constant velocity
Sx = vx.t   (use total time of flight)

= 16.1 x 4.66
= 75.0m       That’ll be 6 !

Try Worksheet 
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If you find solving Projectile Motion problems is
difficult, try to learn these basic “rules”:

• The “launch velocity” must be resolved into a
horizontal velocity (ux) and a vertical velocity (uy).
Once you have these, you can deal with vertical and
horizontal motion as 2 separate things.

• The motion is symmetrical, so at the highest point,
the elapsed time is exactly half the total time of flight.

•

Also, at the highest point, vy = zero.
The projectile has been rising to this point. 
After this point it begins falling. 
For an instant vy = 0. Very useful knowledge!

• Maximum Range is achieved at launch angle  45o.

• Horizontal Motion is constant velocity... easy.
Use vx = ux and    Sx = ux.t

• Vertical Motion is constant acceleration 
at  g = -9.81ms-2,  so use vy = uy + g.t      
to find “t” at the max.height (when vy=0)
or, find vy at a known time.

Use   Sy = uy.t + 1.g.t2

2         
to find vertical displacement (Sy) at a known time, or
find the time to fall through a known height (if uy=0)

Projectiles 
Launched Horizontally

A common situation with projectile motion is when
a projectile is launched horizontally, as in the
following example. This involves half the normal
trajectory.

θθ angle of launch M
ax

im
um

 H
ei

gh
t

“Range” = Total Horizontal Displacement

Horizontal
Velocity

vx

Vertical
Velocity

vy

The top of the arc is the mid-point.
At this point Vy = zero

u
uy

ux

PROJECTILES LAUNCHED
AT SAME VELOCITY

LAUNCH ANGLE 45o

GIVES MAXIMUM
RANGE

Plane flying horizontally,
at constant 50.0ms-1

Releases a bomb from
altitude = 700m

Questions
a) How long does it take for the 
bomb to hit the ground?
b) At what velocity does it hit?
c) If the plane continues flying straight and level, where
is it when the bomb hits?

Solution
Because the plane is flying horizontally, the
intitial velocity vectors of the bomb are:

Horizontal, ux= 50.0ms-1,
Vertical,     uy= zero

a) Time to hit the ground
We know the vertical distance to fall (-700m (down)),
the acceleration rate (g= -9.81ms-2) and that uy=0.
(Initially, its vertical velocity = zero)

Sy = uy.t + 1.g.t2

2     
-700 = 0xt + 0.5 x(-9.81)x t2

-700 = -4.905xt2

∴∴ t2 = -700/-4.905
t = 11.9s

b) Final Velocity at impact
Vertical Horizontal
vy = uy + g.t vx= ux

= 0 + (-9.81)x11.9 vx= 50.0ms-1.
vy= -117ms-1. (down)

v2=vy
2 + vx

2

= 1172 + 50.02

∴∴ v =    16,189
= 127ms-1.

Tan θθ = 117/50
∴∴ θθ  ≅≅ 67o.

Bomb hits the ground at 127ms-1, 
at angle 67o below horizontal.

c) Where is the Plane?
Since both plane and bomb travel at the same
horizontal velocity, it follows that they have both
travelled exactly the same horizontal distance when
the bomb hits.  i.e. the plane is directly above the
bomb at impact.

(In warfare, this is a problem for low-level bombers... 
the bombs must have delayed-action fuses)

50.0

Final Velocity 

θθ
11

7

Angle greater than 45o

Angles less than 45o

Analysing Projectile Motion cont.

Try Worksheet  1
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Prac Work: Projectile Motion

Activity 1    A Simple Observation
Someone with some basic woodwork skills may be
able to make a small device similar to this diagram.

It can be “loaded” with a pair of identical coins or
other small objects as shown.

If struck sharply, it spins on its axle.

This launches one coin/ball horizontally as a
projectile. The other is dropped vertically.

Force
applied This ball flies as

a projectile.

This ball drops vertically

Device rotates
freely on axle

The observation to make is whether or not the 2 objects hit the ground at the same time. Discuss the result.
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measure horizontal distance
to landing point (m)

clamp

ball bearing
or marble

bench

clamp or duct tape

large diameter
plastic tubing

“landing pad”
of blu-tack

clamp
stand

Activity 2   Measuring a Projectile Trajectory
The diagram shows a simple laboratory set up to make some basic measurements
of the trajectory of a projectile.

You need to practice dropping a heavy ball bearing into the top end and making
sure it lands consistently at the same point on the floor. You can then place a flat
pad of putty (blu-tack) at this point. The ball will leave a mark which gives an
accurate point for measuring distance.

The plastic tubing can be adjusted (with a clamp stand) to different heights for the
ball to accelerate before launching horizontally as a projectile.

Your Challenges:

a) Using the measured height above the bench, calculate the velocity of the ball as
it exits the tube. 
(Assume no friction, although you may have to reconsider this later)

b) Analyse the projectile motion using the launch velocity and height of
launch to find the theoretical landing position on the floor.

c) Compare the calculated landing point to the actual landing point. 
Discuss and account for any discrepancy. 

Discuss the possible sources
of errors in this experiment and

how to improve the 

• accuracy
and

• reliability

of the activity.

d) Repeat the experiment with different starting
heights by adjusting the position of the
acceleration tube and launch height.

Try Worksheets  2 & 3
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The force causing the turning
is always toward the centre of

the circle.This is called
“Centripetal” force

The velocity vectors at any instant are
tangents to the circle.

Path of a
mass in
circular
motion

v
v

v
v

F F
F

F

Even though the speed may be constant, the object
is constantly accelerating because its direction is
constantly changing. This acceleration is towards
the centre of the circle and is called “centripetal
acceleration”.

The force causing this acceleration is called
“centripetal force” and is always directed to the
centre of the circle. 

In the case of our mass on a string, the centripital
force is the tension in the string. In the case of a car
turning a circular corner, the centripital force is due
to friction between the tyres and the road. In the
case of a satellite in circular orbit, the force is due to
gravity.

The velocity vector is constantly changing, but at
any instant it is a tangent to the circle, and therefore,
at right angles to the acceleration and force vectors.

Example Problem 
A 100g ball is being swung in a circle on a string of
length 1.50m. It completes one “orbit” every 0.25s. 
Calculate:
a) its orbital speed.
b) the centripetal acceleration.
c) the tension force in the string.

Solution
a) v = 2ππr =   2 x ππ x 1.50 / 0.25

T      = 37.7 ms-1.

b) ac = v2  = 37.72 / 1.50  =  948 ms-2.   
r

c) Fc = m v2    = 0.100 x 37.72 / 1.50
r

= 94.8 N
(It had better be a strong string... Fc is about 10g !)

2. Circular Motion
Imagine swinging a mass around on
the end of a string. The mass moves in
a circle, but if you let go of the string, it
flies off at a tangent to the circle. 
(and it becomes a projectile)

In the earlier topic on “Dynamics” you studied the Physics
of motion in a straight line. 
How can we understand this motion in a circle?

Newton’s 1st Law tells us that unless a force acts on a
moving object, it will move in a straight line at a
constant velocity.

Obviously then, there must be a force acting on the mass
so that it moves in a circle.

This force, of course, is due to the “tension force” in the
string. It is constantly pulling the mass towards the centre
of the circle. If the string breaks there is no more force, so
the mass obeys Newton’s 1st Law and flies off
(initially) in a straight line at constant velocity.

The diagram below shows the circular motion as 
seen from above. The mass is travelling at a
constant speed around the circle.

instantaneous
velocity vector 
is at a tangent

mass = m

Length of string = Radius of circle = r

Circumference of circle = 2ππr

Time for 1 complete revolution = T
(“period” of orbit)

Orbital speed,   v = distance
time

=  2ππr
T

Orbital Speed (& instantaneous tangential velocity)

v = 2ππr
T

Centripetal Acceleration

ac = v2

r

Centripetal Force Fc =  mv2

r
r = radius of the circle (in metres)
T= period of rotation. (s)
v = instantaneous velocity (ms-1)   (“orbital speed”)
m = mass of object in motion (in kg)
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So long as the frictional forces are strong enough,
the vehicle will follow a circular path around the
corner.

If the centripetal force required for a particular
corner exceeds the friction “grip” of the tyres, then
the vehicle will not make it, and may “spin out”
and crash.
This can happen because:
• speed is too high for the radius of the curve.   (i.e. the radius is too small compared to velocity)
• loss of friction between tyres and road.   (e.g. road is wet, or tyres are worn smooth)

Instantaneous
Velocity vector 
straight ahead

Wheel 
turned

Path car 
will take

Centripetal

Force

keep it simple science
® Circular Motion of Vehicles Turning Corners

So, where does the centripetal force come from to push a moving vehicle, such as a car, around a corner?

The centripetal force comes from the frictional “grip” of the tyres on the road. Turning the steering wheel
creates new friction forces which are directed to the centre of an imaginary circle.

Example Problem 
The maximum frictional force possible from each
tyre of this 750kg car is 5,000 N.

What is the maximum speed that the car can go
around a circular curve with a radius of of 40m?

Solution
Max. Force possible from 4 tyres = 4x 5,000

= 20,000N
Centripetal Force cannot exceed this value.
Fc = m v2 / r, so v2 = Fcr / m

= 20,000 x 40 / 750
v2 = 1067

∴∴  max. v =     1067   ≅≅ 33 ms-1

(This is almost 120 km/hr, so for a tight 40m radius
curve, these must be VERY good tyres!)

Centrifugal Forces & Banked Corners
“Centrifugal Force” is the apparent force that
objects seem to experience when travelling around a
curve, such as happens in circular motion. For
example, we are all familiar with loose objects on the
dashboard sliding to the left as our car turns a curve
to the right. We would say that “centrifugal force
pushed them towards the outside of the curve”.

In fact, centrifugal force is a “pseudo-force” which
arises due to inertia. It seems real when you are
inside the turning car, but when analysed from a non-
accelerating position (eg measuring the Physics from a stationary
over-pass as the car travels under you) the only real force acting
on the car (and contents) is centripetal force causing
acceleration towards the centre of the circle.

The loose object on the dashboard has insufficient
friction to stay attached to the car, so its inertia
(Newton’s 1st Law... tendency to continue travelling in a straight line)
takes over. It actually tries to fly off at a tangent to the
curve, but from within the car this seems to be an
outwards push from a force we call “centrifugal”.

The force is fake, but the inertia is real. On a bicycle
at speed, the rider always “leans into the curve” to
conteract the outward (actually tangential) inertia.

On a curve on a horizontal track, this inward lean 

Banked curve in a
cycle velodrome.

Image by Tradnor
CCA-SA 3.0

can cause the rider to fall because the side-wall of
the tyres comes into contact with the road surface
and it may lack the friction to hold on at high speed.

Banking the curve up at an angle allows the rider to
lean into a curve at high speed while still keeping
the tyre tread in full frictional contact. Not only are
cycle velodromes “banked”, but so are well-made
roadways and railways. Aircraft bank to turn, too.
It’s all about maintaining friction (or aircraft “lift”)
so centripetal force “pulls” you around the corner.
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Angular Velocity

When analysing circular motion, sometimes it is useful
to measure the angle through which an object moves
(measured from the centre of the circle) per unit of time,
rather than measuring the distance travelled per unit of
time.

For example, if you are observing a satellite pass
overhead in the night sky, it is not easy to measure its
velocity because (for instance) you don’t know how
high up it is and therefore you cannot measure distance
travelled per second. BUT you can measure the angle it
moves through per second.

For convenience when working with circles, the angles
are always measured in radians, not degrees.
(If not familiar with radians, note that 

1 rad. ≅≅ 57.3o

because, by definition, there are 2ππ radians in a full
circle 360o.) The convenience of using radians should
become clear to you soon.

Angular Velocity
The angular velocity of an object in circular motion can
be defined as the “angular change of position
(displacement) per unit of time” when viewed from the
centre of the circle. The symbol used for angular
velocity is the (lower case) Greek letter omega ( ωω ).

ωω    ==    ΔΔφφ
t

where ΔΔφφ is the change in the angle (in radians) and “t”
is the elapsed time in seconds. The units for angular
velocity are radians per second (rad.s-1)

This is the formula presented in the syllabus and your
HSC Data Sheet. However, it may be more informative
to consider this concept as follows:

Imagine an object in circular motion. To travel one
complete revolution, its angular displacement is 22ππ
radians (360o). The time it takes for one revolution
(“period’) is “T” seconds.

Therefore, ωω    ==    ΔΔφφ ==    2ππ
t          T

This allows us to derive an alternate set of equations to
apply to problems on circular motion.

Orbital Speed & Angular Velocity

v = 2ππr but ωω    ==    2ππ so v = ωω r
T T

Centripetal Acceleration
ac = v2 but v = ωω r  

r
so ac= ωω2r2   =  ωω2r

r

Centripetal Force
Fc =  mv2     

r
Substituting as above gives  Fc =  mωω2r

Example Problem
A 250g ball is being swung around on a string
which is 2.5m long. Its period of rotation is 1.25s.

a) Find its angular velocity.

b) What is the centripetal force in the string?

c) What is the orbital speed?

Solution
a) ωω ==    22ππ ==    2ππ / 1.25 = 5.03 rad.s-1.

T

b)   Fc =  mωω2r = 0.250 x (5.03)2 x 2.5
= 15.8 N

c) v = ωω r = 5.03 x 2.5 = 12.6 ms-1.

Work Done in Circular Motion
How much work is done by the centripetal force
during circular motion?

You will recall that “work” is done when a force
acts over a distance and that the amount of work
is equivalent to the energy applied or used.

W = F.S
However, you may also recall that the
displacement in this equation must be in the
direction of the force.

In circular motion, the centripetal force acts towards
the centre of the circle. Since the revolving object
always stays the same distance (= the radius) from
the centre, then there is NO DISPLACEMENT in the
direction of the force.

Therefore, the work done is zero!

In circular motion, no work is done by the centripetal
force and no energy change occurs. This is why a
planet in orbit can remain that way for ever, without
running out of energy... no work is being done.

Try Worksheet  4
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...and now for something completely different!

At this point the syllabus specifies that you must
learn about another situation where an object may
rotate in a circle. However, this rotation has nothing
to do with “circular motion” involving centripetal
force.

Instead, here we will consider the motion which
occurs when one or more forces act, not towards the
centre, but (usually) on the line of a tangent to the
circle.

Let’s begin with a simple example: a see-saw.

Basically, this is a rigid beam which is able to rotate
around its pivot point, or “fulcrum”. To begin with, it
is perfectly balanced and motionless.

If you place a weight on one end the see-saw
experiences a “turning moment” or “torque” and
begins to rotate.

In the case of a see-saw, it won’t go far because it
will hit the ground, but in the case of many
mechanical devices, the bar can continue to rotate in
a circle if the force continues to act along the line of
a tangent to the circle of rotation.

Calculating Torque
A force acts on the end 
of a rod or bar at distance
“r” from its pivot point.
(We use “r” because that
distance is the radius of
the circle it will turn around.)
The force acts at angle θθ as shown.
Then:

Pivot point or “fulcrum”

Force

r

rotation

rotation

ττ = r.F.sinθθ
ττ  = torque on the system, in newton-metres (Nm).
r = distance from pivot to point where force is 

applied, in metres (m).
F = force, in newtons (N).

Note that when θθ = 90o, sinθθ = 1. This means that
maximum torque occurs when the force acts at right
angles to the bar. If θθ = 0o, torque is zero.

The symbol for torque is the Greek letter “tau”, ττ.

θθ

r

F

Example Problems
1. A rigid bar has a pivot point at one end and is
3.0m long. It can rotate in a horizontal plane and for
simplicity, friction and the weight of the bar itself are
taken to be zero.

Find the magnitude of the torque if:
a) a force of 10N is applied at right angles, at a point
halfway along the bar.
b) The same force is applied at the end of the bar.
c) The same force is applied just 10cm from the
pivot.
d) A force of 20N is applied to the end of the bar at
an angle of 30o.

Solutions
a) ττ = r.F.sinθθ  = 1.5 x 10 x sin90 = 15 Nm.

b) ττ = r.F.sinθθ  = 3.0 x 10 x sin90 = 30 Nm.

c) ττ = r.F.sinθθ  = 0.1 x 10 x sin90 = 1.0 Nm.
(note the effects of distance from the pivot)

d) ττ = r.F.sinθθ  = 3.0 x 20 x sin30 = 30 Nm.

(Compare (d) with (b) to note the effect of angle)

Everyday examples of applying torque include: 

• pushing a door open on its hinges. If you push on
the door at a point close to the hinges, you need
much more force to get the same torque as pushing
at the outside edge.

• winding the handle on a fishing reel, or winch.
If the shaft of the handle is longer, you get more
torque and the job is easier.

The concept of torque is especially important with
motors. It will be re-visited in a later topic when
electric motors are covered.

Is Torque the Same as “Work”?
The unit of torque is a newton-metre. This is the
same unit as Work. (W = F.S) Work is equivalent to
energy, so a newton-metre of work is equal to a
joule of energy.

But wait! This does NOT work. Torque is NOT the
same as energy and it is simply a co-incidence that
the units of measurement are the same.

Torque is a measure of the rate of change of angular
momentum and is not equivalent to energy until
multiplied by the rotation rate.

We are NOT going there, but for the petrol-heads,
the torque of a car engine IS related to how powerful
it is. An engine’s power is described as “(number of)
kilowatts at (number of) RPM”. RPM is “revolutions
per minute”. Engine power (power is rate of energy change) is
actually given by  

P = ττ..ωω (Power = torque x angular velocity)

Try Worksheet 5 
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Gravitational Fields
Every mass acts as if surrounded by an invisible
“force field” which attracts any other mass within
the field. Theoretically, the field extends to infinity,
and therefore every mass in the universe is exerting
some force on every other mass in the universe...
that’s why it’s called Universal Gravitation.

Newton’s Gravitation Equation
It was Isaac Newton who showed that the strength
of the gravitational force between 2 masses:

• is proportional to the product of the masses, and
• inversely proportional to the square of the

distance between them.

He came up with this idea in 1666 as a way to solve
a long-standing problem in Astronomy to do with
“Kepler’s Laws of Planetary Motion”.   More later!

Newton’s Universal Gravitation

FG =  GMm
r2

FG = Gravitational Force, in N.
G = “Universal Gravitational Constant” = 6.67 x 10-11
M & m = the 2 masses involved, in kg.
r = distance between M & m (centre to centre) in m.

Example Calculation 1
Find the gravitational force acting between the
Earth and a 750kg satellite in orbit 42,000km from
the Earth’s centre.

Solution FG =  GMm
r2

= 6.67x10-11x6.0x1024x750
(4.2x107)2

= 170 N.

Example 2
Find the gravitational force acting between the
Earth, and an 80kg person standing on the surface,
6,370km from Earth’s centre (d = 6.37 x 106m).

Solution FG =  GMm
r2

= 6.67x10-11x5.97x1024x 80
(6.37x106)2

= 785 N.

This is, of course, the person’s weight!
... and sure enough

F = mg = 80 x 9.81 = 785N.
∴∴ Gravitational Force = Weight Force

Effects of Mass & Distance 
How does the Gravitational Force change for
different masses, and different distances?

Imagine 2 masses, each 1kg, separated by a
distance of 1 metre.

FG =  GMm = G x 1 x 1 = G
r2 12

Effect of masses
Now imagine doubling the mass of one object:
FG =  GMm = G x 2 x 1 = 2G   (Twice the force)

r2 12

What if both masses are doubled?
FG =  GMm = G x 2 x 2 = 4G (4X the force)

r2 12

Effect of Distance
Go back to the original masses, and double the
distance:
FG =  GMm = G x 1 x 1 = G ( 1/4  the force)

r2 22 4

Gravitational Force shows the “Inverse Square”
relationship... 

triple the distance = one ninth the force
10 x the distance = 1/100 the force, etc.

Universal Gravitation &
Orbiting Satellites

It should be obvious by now that it is FG which
provides the centripetal force to hold any satellite in
its orbit.

Not only does this apply to artificial satellites
launched into Earth orbit, but for the orbiting of the
Moon around the Earth, and of all the planets
around the Sun.

Our entire Solar System is orbiting the Galaxy
because of gravity, and whole galaxies orbit each
other. Ultimately, gravity holds the entire universe
together, and its strength, compared to the
expansion of the Big Bang, will determine the final
fate of the Universe.

3. Motion in Gravitational Fields

Try Worksheet 6
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Example
If an astronaut in his space suit weighs 1,350N on
Earth, what will he weigh on Mars where  g = 3.84ms-2?

Solution F = mg 
On Earth,  1,350 = m x 9.81

∴∴ mass = 1,350/9.81 
= 137.6 kg

Gravity and Weight on Other Planets
We are so used to the gravity effects on Earth that
we need to be reminded that “g” is different
elsewhere, such as on another planet in our Solar
System.

Since “g” is different, and weight force  F = mg
it follows that things have a different weight if taken
to another planet.

Here are values of “g” on the surface of some other
planets. (Good luck finding the surface of Jupiter if you go there!)

Planet g g 
(ms-2)            (as multiple of Earth’s)

Earth 9.8 1.00
Mars 3.8 0.39
Jupiter 25.8 2.63
Neptune        10.4 1.06
Moon 1.6 0.17

Composite photo of Earth and Mars to the
same scale. Mars is much smaller and is

lower in both density and total mass. 
Its surface gravity is only 39% of Earth’s.

Photo by NASA

Calculating Your Weight on another Planet
So on Mars,  

W = mg 
= 137.6 x 3.84 
= 528kg.

The Gravitational Field Strength, “g”

From that problem we can say that:

weight force = gravitational force

mg   = GMm / r2

Now imagine placing a 1kg mass at a point within
the gravity field of a planet with mass “M”. 
If m = 1 in the equation above, then:

g = GM / r2

This can be interpreted as the strength of the
gravitational field at that point, because it defines
the effect of the field on a “test mass” of 1 unit (kg). 
(Compare this idea to how the Electric Field strength was defined in a
previous module.)

So, “g” is both the strength of the grav. field
(measured in N.kg-1) at a given point AND it is the
acceleration due to gravity (ms-1) at that point.

We tend to think of gravity as being the same
everywhere, but that is only because we are always
on, or very close to, the Earth’s surface where 
g = 9.8 N.kg-1 or ms-1.

However, the equation at left means that the value
of “g” depends on the mass of the planet you are
on AND how far you are from its centre.

Here on the surface of Earth we are rE= 6.371x106 m
from the centre of a mass of ME = 6.0x1024 kg.

Substituting this gives
g = 6.67x10-11 x 6.0x1024 / (6.371x106)2

= 9.86 ms-2.  
(Discussion: why doesn’t this agree exactly with standard data?)

Go up 1,000 km above the surface and  g = 7.4 ms-2.

If the Earth became denser and shrank so that the
surface was 1,000km lower, (but same mass) then
surface gravity would be  g = 13.9 ms-2.

However, if you go lower by digging a hole, “g”
actually decreases.  As you go deep into the Earth,
some of its mass is above you, attracting you
upwards. 

At the centre of the Earth g = zero!

In earlier topics you learnt that “g” is the acceleration due to gravity. 
That’s fine, but there is another way to think of it. Look again at problem 2 on the previous page.

keep it simple science
®
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Escape Velocity is defined as the launch 
velocity needed for a projectile to escape from the
Earth’s gravitational field. 

Mathematically, it can be shown that (for any planet)

Escape Velocity,    vesc =     2GM / r

G= Gravitational Constant 
M = Mass of the planet (kg)
r = Radius of planet (m)

Note that:

• The mass of the projectile is not a factor. Therefore, all
projectiles, regardless of mass, need the same velocity to
escape from Earth, about 11km per second!

• The Escape Velocity depends only on the mass and
radius of the planet.

It follows that different planets have different escape
velocities. Here are a few examples...

EARTH

...at the right velocity, the projectile curves
downwards at the same rate as the Earth
curves... it will circle the Earth in orbit!

Isaac Newton and Orbiting
Once Isaac Newton had developed the Maths
and discovered the laws of motion and
gravity, he thought about Projectile Motion.

Newton imagined a cannon on a very high
mountain, firing projectiles horizontally with
ever-increasing launch velocities. The faster
each ball is launched, the further it flies
before hitting the ground. But then...

...if the launch velocity is high enough,
the projectile can escape from the

Earth’s gravity completely.
Newton had discovered the concepts of a
gravitational orbit, and of “escape velocity”.

PLANET ESCAPE VELOCITY
in km/sec (ms-1)

Earth 11.2 1.12 x104

Moon 2.3 2.3 x103

Mars 5.0 5.0 x103

Jupiter 60.0 6.0 x104

Placing a Spacecraft into Earth Orbit
A projectile needs an enormous velocity to escape
from the Earth’s gravitational field... about 11 km per
second. Think of a place 11 km away from you, and
imagine getting there in 1 second flat!

What about Newton’s idea of an orbiting projectile? 
If it is travelling at the right velocity, a projectile’s
down-curving trajectory will match the curvature of
the Earth, so it keeps falling down, but can never
reach the surface. A projectile “in orbit” becomes a
“satellite”.

It can be shown that to achieve orbit, the launch
velocity required is less than escape velocity, but
still very high... about 8 km per second. How is this
velocity possible?

In a 19th century novel, author Jules Verne proposed
using a huge cannon to fire a space capsule
(including human passengers) into space.
The problem with this idea is the rate of acceleration

to go from zero to orbital velocity in the very short time it takes to fire a cannon. A fit, trained astronaut can
tolerate sustained forces of “5g”, but anything above about “10g” is life-threatening. Jules Verne’s cannon
astronauts would have suffered forces of about 200g... instantly fatal.

That’s why we use rockets, not cannons. A large rocket can produce a steady acceleration at a “g-force”
which is acceptable for trained astronauts, over the 10 minutes (or so) that it takes to reach orbit. If you’re
wondering why we don’t use jet engines, or similar, you need to remember that there is no air (with oxygen
to burn the fuel) in space. Rockets carry their own oxidisers plus fuel and so do not need air. In fact, of
course, they work better in space where there is no air resistance.

Try Worksheet 9

Space Shuttle launch 1988
Image by NASA
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Simple solid-fuel (e.g. gunpowder) rockets have been used as
fireworks and weapons for over 500 years.

Over 100 years ago, the Russian Tsiolkovsky (1857-1935) was
the first to seriously propose rockets as vehicles to reach
outer space. He developed the theory of multi-stage, liquid-fuel
rockets as being the only practical means of achieving space
flight.

The American Robert Goddard
(1882-1945) developed rocketry
theory futher, but also carried out
practical experiments including the
first liquid-fuel rocket engine.

Goddard’s experiments
were the basis of new
weapons research
during World War II,
especially by Nazi
Germany. 

Wernher von Braun
(1912-1977) and others developed the liquid-fuel
“V2” rocket to deliver explosive warheads at
supersonic speeds from hundreds of kilometers
away.

A Brief History of Rocketry
At the end of the war many V2’s, and the
German scientists who developed them,
were captured by either the Russians or
the Americans. They continued their
research in their “new” countries, firstly to
develop rockets to carry nuclear weapons
(during the “Cold War”) and later for space
research.

The Russians
achieved the
first satellite
(“Sputnik”
1957) and the
first human in
orbit, and the
Americans the first manned missions to
the Moon (1969).

Since the 1970’s, the use of satellites has
become routine and essential to our
communications & research, while
(unmanned) probes have visited  every
other planet in the Solar System, plus an
asteroid and a comet.

Goddard
and his first
liquid-fuel

rocket.
Replica of

Sputnik
in a museum

V2

Physics of a Rocket Launch
Direction of Launch
Straight upwards, right? Wrong!

To reach Earth orbit, rockets are aimed toward the
EAST to take advantage of the Earth’s rotation. The
rocket will climb vertically to clear the launch pad,
then be turned eastward.

Earth, viewed
from above
North Pole

Rotation

Orbit path

Launch
Trajectory

At the equator, the Earth is rotating eastwards at
about 1,700km/hr (almost 0.5km/sec) so the rocket
already has that much velocity towards its orbital
speed.

Rocket launch facilities are always sited as close to
the equator as possible, and usually near the east
coast of a continent so the launch is outwards over
the ocean.

Conservation of Momentum
Why a  rocket moves is yet
another phenomenon
explained by Newtonian
Physics.

Newton’s 3rd Law

Force on   =  Force on
Exhaust        Rocket
Gases

It can also be shown that 

Change of Momentum  =  Change of Momentum
of Exhaust Gases          of Rocket

Mass x velocity  =  Mass x velocity

The mass x velocity of the exhaust gases stays
fairly constant during the launch. However, the
mass of the rocket decreases as its fuel is burnt.
Therefore, the rocket’s velocity must keep
increasing in order to maintain the Conservation
of Momemtum.

This increasing acceleration (and g-forces) used
to make early astronauts very uncomfortable, but
modern space vehicles are “throttled-back” during
launch to keep the g-force more tolerable.

Action Force
pushes on

exhaust gasses,
pushing them

backwards

backwards ( -ve) forwards (+ve)

Reaction force pushes
rocket forward



KISS Resources for NSW Syllabuses & Australian Curriculum.

Phys Mod. 5 “Advanced Mechanics”     PhotoMaster
copyright © 2005-18   KEEP IT SIMPLE SCIENCE
www.keepitsimplescience.com.au

Page 15 Inspection Copy for school evaluation
only. Copying NOT permitted.

keep it simple science
® School Inspection only.

Copying NOT permitted.

There are 2 main types of satellite orbits:

Low-Earth Orbit
As the name suggests, this type of orbit is relatively
close to the Earth, generally from about 200km, out
to about 1,000km above the surface. 

For any satellite, the closer it is, the faster it must
travel to stay in orbit. Therefore, in a Low-Earth
Orbit a satellite is travelling quickly and will
complete an orbit in only a few hours. 

A common low orbit is a “Polar Orbit” in which the
satellite tracks over the north and south poles while
the Earth rotates underneath it. 

Geo-Synchronous Orbits
are  those where the period of the satellite (time taken
for one orbit) is exactly the same as the Earth itself... 
1 day. 

If the satellite orbit is directly above the equator, the
satellite is also “geo-stationary”, meaning that it is
always directly above the same spot on the Earth,
and seems to remain motionless in the same
position in the sky. It’s not really motionless, of
course, but orbiting around at the same angular
velocity as the Earth itself.

Geostationary orbits are above the equator, and have to
be about 36,000km above the surface in order to have
the correct orbital speed.

Being so far out, these satellites are not much good
for photographs or surveys, but are ideal for
communications. They stay in the same relative
position in the sky and so radio and microwave
dishes can be permanently aimed at the satellite, for
continuous TV, telephone and internet relays to
almost anywhere on Earth.

Three geostationary satellites, spaced evenly
around the equator, can cover virtually the whole
Earth with their transmissions.

Orbits & Centripetal Force
The orbit of a satellite is often an oval-shape, or an
“ellipse”. However, in this topic we will always
assume the orbits are circular... K.I.S.S. Principle.

To maintain motion in a circle an object must be
constantly  acted upon by “Centripetal Force”,
which acts towards the centre of the circle.

It is (of course) gravity which provides the
centripital force which keeps a satellite in orbit.

Satellites and Orbits

Polar
Orbit 

N

S

This type of orbit is
ideal for taking photos

or Radar surveys of
Earth.

The satellite only “sees”
a narrow north-south

strip of the Earth, but as
the Earth rotates, each

orbit looks at a new
strip.

Eventually, the entire
Earth can be surveyed.

Being a close orbit, fine
details can be seen.

Centripetal Force
Vector

always towards centre

Instaneous Velocity
vector is a tangent to
the circle

Object in
Circular
Motion

FcFc

V

V

The object is
constantly

accelerating. 
The “centripetal

acceleration” vector
is towards the

centre.
Earth’s
Rotation

Equator

Satellites of this type can be seen as
“moving stars” in the night sky. They

always move on a N-S path.

Example Problem
A 250kg satellite in a circular orbit 200km above the
Earth, has an orbital period of 1.47hours.

a) What is its orbital velocity?

b) What centripetal force acts
on the satellite?
(Earth radius = 6.37x106m)

Solution
a) First, find the true radius of
the orbit, and get everything
into S.I. units:
Radius of orbit = 200,000 + 6.37x106 = 6.57x106m
Period = 1.47hr = 1.47 x 60 x 60 = 5.29x103 sec.

v = 2ππr  = 2 x ππ x 6.57x106 /5.29x103 = 7.80x103ms-1.
T

b) Fc =  mv2 = 250x (7.80x103)2 / 6.57x106
r

= 2,315  = 2.32 x 103 N.

The satellite is travelling at about 8 km/sec, 
held in orbit by a gravitational centripetal force of
about 2,300N.

R

200km

Possibly the most famous satellite:
the Hubble Space Telescope.

Photo by NASA

Try Worksheet 10

Try Worksheet 11
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Satellites, Planets & Moons

So far, we have used the word “satellite” only for
human-made space-craft in Earth orbit. 

However, don’t forget that all the planets of the
Solar System are satellites of the Sun and that the
Moon is a natural satellite of Earth. Most of the
other planets have moons (some have dozens) and
these are satellites of their “primary”... the body
they orbit around.

Orbital Speed & Radius
Since we know that the centripetal force is due to
the gravitational force between the satellite and its
“primary”, we can say:

Fc = FG or    mv2 =  GMm
r            r2

Simplifying gives:
v2 =  GM  so v =   GM

r                    r
What does this mean?

What this means is, that for any given “primary”
object, there is a relationship between the orbital
speed of a satellite and the radius of the orbit.

To put it another way, for any given radius of an
orbit, there is a certain orbital speed which “fits”
that orbit. The relationship is inverse: a larger
radius orbit results in a slower orbital speed and
vice-versa.

For artificial satellites in Earth orbit, this means that
low-level satellites must move very fast in their
orbit, while those further out move more slowly.

Same thing for the planets in orbit around the Sun.
Those closer to the Sun move faster, those further
out move slower. This was first realised and
measured by astronomers about 400 years ago and
was the stimulus that caused Isaac Newton to get
busy.

It will help your understanding if you know some
background about what they knew back then, and
what was the problem that Newton solved.

A Brief History of Astronomy (to the time of Newton)

Ancient Beliefs
In ancient times, the Sun, Moon & stars were “The
Heavens” and considered the home of Gods. The
early Greeks were the first to attempt to explain
things based on evidence, observation &
calculation... ie scientifically.

Generally, it was believed that the Earth was the
centre of the Universe and everything else revolved
around us. There were some who realised that
movements in the sky could also be explained if the
Earth went around the Sun AND rotated on its axis.
(if interested, research Aristarchus.) However, no-one could
find evidence for movements of the Earth, so the
“Geocentric Model” was accepted.

Throughout the Middle Ages, this idea was so
prevalent that it was adopted by the Church as
religious dogma... any other suggestions were
heresy and punishable by torture & death.

Nicholas Copernicus (Polish. 1473 -1543)
The first modern suggestion that the Earth revolves
around the Sun was published by Copernicus in a
book released just as he died. 

It was a Heliocentric model... Sun centred.

The accuracy of predicted motions of planets, etc.
remained much the same as the Geocentric model,
but this model was much simpler in its
explanations. The Copernicus model was NOT
immediately accepted at the time because:

• there was still no evidence that the Earth moved.

• the Church condemned the theory as heresy and 
banned the book.

Tycho Brahe (1546-1601  Danish)

Tycho built the most advanced observatory of that
time to gather outstandingly accurate data (accurate
for measurement without a telescope) of planetary
movements. He favoured the geocentric model and
hoped his observations would prove Copernicus
wrong.

However, this doesn’t mean he accepted the ancient
models either.  His aim was to develop a new
model, but he died before completing it.

He jealously guarded his data from others, but
when he died it went to his student Kepler.

Johannes Kepler    (1571-1630   German) 

Kepler fitted Brahe's extremely accurate data
(especially of the movements of planet Mars) to the
Copernicus model.  Finally, he found it only fitted if
the orbits were ellipses, not circles.

Eventually he proposed 3 "Laws of Planetary
Motion" , but could give no explanation of how or
why the Earth and planets could orbit around the
Sun.  The Heliocentric idea was still NOT accepted
widely. One of his “Laws” is detailed, next page.

Galileo Galilei (1564-1642 Italian)
About the same time as Kepler’s Laws, (circa 1610)
Galileo was the first to use a TELESCOPE to view the
heavens. 

His observations of Jupiter’s moons, planet Venus
and the Moon conflicted with the Geocentric model
and supported the Heliocentric idea of Copernicus. 
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Problem 2
Find the orbital radius of a geo-stationary satellite, given
that its period of orbit is 24.0 hours.
(24.0hr = 24.0x60x60 = 8.64 x 104 sec)
Doing it this way, you MUST use S.I. units!!

(G= Gravitational Constant = 6.67 x 10-11

M = Mass of Earth = 5.97 x 1024kg)

R3 =  GM
T2 4ππ2

R3 = 6.67x10-11 x 5.97x1024 x (8.64x104)2

4ππ2

This is about 42,000km, or about 36,000km above the
surface...  the same answer as before. (It better be!)

Kepler’s “Law of Periods” & Newton’s Proof

One of Kepler’s “Laws of Planetary Motion” was
a mathematical relationship between the Period
of the orbit and its Radius:

r3 αα  T2 (Greek letter alpha (αα  ) 
means “proportional to”)

This means that
r3 =  constant
T2

This means that for every planet, the (Radius)3
divided by (Period)2 has the same value. Similarly,
every satellite of the Earth would have the same
value of r3 / T2, but this value would be quite
different to the value for the Sun’s satellites. The
ratio is different for each “primary”.

Kepler’s Law of Periods was discovered
empirically... that is, it was discovered by
observing the motion of the planets, calculated
from Tycho’s data. Kepler had no idea WHY it
was so and could not prove mathematically that
it was generally true.

For about 50 years, no-one could figure this out.
Meanwhile, across Europe the power and control
of the Church of Rome was being weakened by
the spread of the Protestant movement.  

In Protestant countries Science was flourishing
and in England, a new generation of brilliant
scientists had formed a Scientific Institute called
the “Royal Society”. They became interested in
solving the riddle of Kepler’s Laws.

Encouraged by others, Isaac Newton (age 24) solved
the problem. There is a legend that he was inspired by
seeing an apple fall from a tree, but in fact he
developed his famous 3 “Laws of Motion”, invented a
whole new method of Maths (now called “Calculus”)
and topped it off with his Law of Gravity... apples have
nothing to do with such genius!

With his “Law of Universal Gravitation”  he was able to
prove the theoretical basis for Kepler’s Law, as follows:

The Centripetal Force of orbiting is provided by the
Gravitational Force between the satellite and the Earth, so

Fc = FG or    mv2 =  GMm
r            r2

Simplifying gives:
v2 =  GM but  v = 2ππr

r T
So,   4ππ2r2 = GM

T2 r
re-arranging:       r3 =  GM = constant

T2 4ππ2

Since the right hand side contains all constant values, this
proves Kepler’s Law and establishes the Force of Gravity
as the controlling force for all orbiting satellites, including
planets around the Sun.

In the above, 
G = Universal Gravitational Constant
M = mass of the “primary” body (body being orbited)
m = mass of satellite... notice that it disappears!

This proof explained Kepler’s Laws and proved mathematically that the Heliocentric idea
is correct. Newton’s Gravity law fitted precisely with the Astronomical observations to
explain how & why the Universe worked. Soon, new telescopic observations followed

Galileo’s work and eventually found the proof that the Earth was moving. 
Many consider that this was the beginning of modern Science.

Problem 1
In a previous problem, an Earth satellite 200km high had
a period of 1.47 hrs. Use this to find the height of a
geosynchronous satellite using Kepler’s Law.

Solution
For the satellite above,     R3 =  6,5703 = 1.31 x 1011

(units are km & hours)      T2  1.472

According to the law of periods, ALL satellites of Earth
must have the same value for R3/T2

So, for the geo-stationary satellite:  R3 =  1.31 x 1011

T2

So  R3 = 1.31x1011x (24.0)2

This is approx. 42,000km from Earth’s centre, or about
36,000km above the surface.

Note: When using Kepler’s Law this way it doesn’t matter which units are
used, as long as you are consistent. In this example, km & hrs were used.

You get the same answer with metres & seconds.

3∴∴R = 7.55x1013 = 4.23 x 104 km  
3∴∴R = 7.46x1022 = 4.21 x 107m  

Try Worksheet 12
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Getting a spacecraft into orbit is difficult enough, but the
most  dangerous process is getting it down again in one
piece with any astronauts on board alive and well.

In orbit, the satellite and astronauts have a high velocity
(kinetic energy) and a large amount of GPE due to height
above the Earth. To get safely back to Earth, the
spacecraft must decelerate and shed all that energy.

It is impossible to carry enough fuel to use rocket
engines to decelerate downwards in a reverse of the lift-
off, riding the rocket back down at the same rate it went
up.

Instead, the capsule is slowed by “retro-rockets” just
enough to cause it to enter the top of the atmosphere so
that friction with the air does 2 things:

• cause deceleration of the capsule at a survivable rate of
deceleration not more than (say) “5-g”, and
• convert all the Ek and GPE into heat energy.

The trick is to enter the atmosphere at the correct angle:

Decay of Low-Earth Orbits
Where does “Space” begin?

It’s generally agreed that by 100km above the
surface of the Earth the atmosphere has ended,

and you’re in outer space. However, although
this seems to be a vacuum, there are still a few
atoms and molecules of gases extending out

many hundreds of kilometres.

Therefore, any satellite in a low-Earth orbit will
be constantly colliding with this extremely thin

“outer atmosphere”. The friction or air-
resistance this causes is extremely small, but
over a period of months or years, it gradually

slows the satellite down.

As it slows, its orbit “decays”. This means it
loses a little altitude and gradually spirals
downward. As it gets slightly lower it will

encounter even more gas molecules, so the
decay process speeds up.

Once the satellite reaches about the 100km
level the friction becomes powerful enough to
cause heating and rapid loss of speed. At this
point the satellite will probably “burn up” and

be destroyed as it crashes downward.

Modern satellites are designed to reach their
low-Earth orbit with enough fuel still available

to carry out short rocket engine “burns” as
needed to counteract decay and “boost”

themselves back up to the correct orbit. This
way they can remain in low-Earth orbits for

many years.

Upper Atmosphere

Angle too shallow...
Spacecraft bounces off upper air

layers, back into space

Earth’s Surface

Angle correct...
Spacecraft decelerates safely along
a descent path of about 1,000km

of “Atmospheric
Braking”

Earth’s Surface

Angle too steep...
“g-forces” may kill astronauts.
Heat may cause craft to burn-up.

Earth’s Surface

Early spacecraft used “ablation shields”, designed to
melt and carry heat away, with the final descent by

parachute. The Space Shuttle used high temperature
tiles and high-tech insulation for heat protection, and
glided in on its wings for final landing like an aircraft.

Correct angle is
between 5-7o

Artistic impression of an Apollo spacecraft
during Atmospheric Braking

Re-Entry From Orbit
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In a previous module you studied the relationship
for any object on or near the Earth, that the change
of Gravitational Potential Energy (GPE) is

ΔΔU = mgΔΔh
If an object is allowed to fall down, it loses some
GPE and gains some other form of energy, such as
Kinetic or Heat. To raise the object higher, you must
“do work” on it, in order to increase the amount of
GPE it contains.

Notice that this equation calculates the CHANGE in
GPE and assumes a constant value for “g” on or
near the Earth’s surface. For satellites it is useless.

Gravitational Potential Energy
For mathematical reasons, the point where an object
is defined to have zero GPE is not on Earth, but at a
point an infinite distance away. So GPE is defined as
follows:

This definition has an important consequence: 
it defines GPE as the work done to bring an object
towards the Earth, but we know that you need to do
work to push an object (upwards) away from Earth. 

Therefore, GPE is, by definition, a negative quantity!
So, if you lift an object upwards against gravity, its
GPE increases by becoming less negative. It’s value
might go from (say) -10 units to -5 units. 

Gravitational Potential Energy is a measure of the
work done to move an object from infinity, 

to a point within the gravitational field.

Total Energy of a Satellite

U = -GMm
r

U = GPE in joules (J)
G = Gravitational Constant (= 6.67x10-11)
m = mass of object (kg)
M = mass of Earth, or other planet (kg)
r = distance from centre of the “primary” (m).

Example Problem
Compare the GPE possessed by a geosynchronous 
(r = 4.2x107m) satellite of mass 500kg, with that of a 500kg
satellite in low orbit 200km up. (r = 6.571x106m)

Solution
Geosynch. Satellite
U = -GMm = - 6.67x10-11 x 5.97x1024 x 500 / 4.2x107

r
= - 4.74 x 109 J (-4,740,000,000)

Low Orbit Satellite
U = -GMm = - 6.67x10-11 x 5.97x1024 x 500 / 6.571x106

r
= - 3.03 x 1010 J (-30,300,000,000)

The higher satellite has more GPE (about 6 times more) by
virtue of being less negative in value.

Kinetic Energy in Orbit
You previously learned that 

Ek = 1mv2
2

but to work it out for a satellite it would be better to
express it in terms of G, M, r, etc.

We begin the same way as we have before:
Fc = FG or    mv2 =  GMm

r            r2

Multiply both sides by “r” and divide by 2 gives:
mv2 =  GMm
2           2r 

The left side is the kinetic energy expression, so:
Ek = GMm

2r
This means that a satellite in a higher orbit (r is
larger) will have less Ek. That makes sense, because
at higher orbits we know that its velocity is lower.

Total Energy  =  Ek + U
of a Satellite

=  GMm +  -GMm
2r             r

Express these with a common denominator:

=  GMm +  -2GMm = GMm - 2GMm
2r             2r 2r

Ek + U =   - GMm
2r 

Example Problem
How much energy is required to lift a 500kg satellite
from a low orbit (r = 6.571x106m) up to a
geosynchronous orbit?  (r = 4.2x107m)

Solution
Total energy in low orbit
Ek + U = - GMm = - 6.67x10-11 x5.97x1024 x500

2r               2 x 6.571x106

= -1.51 x 1010 J

Total energy in geosynch. orbit
Ek + U = - GMm = - 6.67x10-11 x5.97x1024 x500

2r               2 x 4.2x107

= -2.37 x 109 J

In the higher orbit, its total energy is increased (it is less
negative). It has lost Ek (lower velocity) but gained GPE
(more height). 
The actual answer to the question is the difference
between these values:

Energy required = -2.37x109 - (-1.51x1010) = 1.27x1010 J

Try Worksheet 13 Finish with Worksheet 14
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